
14 Separation of Variables Method

Consider, for example, the Dirichlet problem

ut = Duxx 0 < x < l , t > 0

u(x, 0) = f(x) 0 < x < l

u(0, t) = 0 = u(l, t) t > 0

Let u(x, t) = T (t)φ(x); now substitute into the equation:

dT

dt
φ = DT

d2φ

dx2
or

1

DT

dT

dt
=

1

φ

d2φ

dx2
.

But the left-hand side depends only on the (independent) variable t, while
the right-hand side depends only on x, so this expression must be constant:

1

DT

dT

dt
=

1

φ

d2φ

dx2
= −λ

Remark: I will get back to why the negative sign is used on the right side
shortly; it is done for convenience because the constant turns out to be a
negative real number, making λ easily remembered as being positive.

For the T equation, dT/dt = −λDT , the rate of change of T is pro-
portional to T , so T (t) must be an exponential function; namely, up to a
multiplication constant, T (t) = e−λDt. Recall from an earlier discussion that
for diffusion we expect dissipation of the features of f(x) over time, so it is
reasonable to have T (t)→ 0 as t→∞. For this to happen, we would expect
λ ≥ 0.

Exercise: Obtain the T (t) by method of integrating factors.
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Applying our boundary conditions to u = Tφ, we have, for example,
0 = u(0, t) = T (t)φ(0)→ φ(0) = 0. So the spatial problem is

d2φ
dx2

+ λφ = 0 0 < x < l

φ(0) = 0 = φ(l)

(1)

But we do not know the value of the constant λ in (1), and since we must
ultimately satisfy the non-zero initial condition when we return to the u
problem, φ(x) can not be the zero function. Hence (1) is an eigenvalue
problem (EVP). So we want all solutions {λ, φ(·)} such that φ is a non-
trivial function. Put another way, we seek all (real) constants λ that give us
a non-zero φ(x), up to a multiplicative constant.

Solving the EVP
First suppose we have a solution pair {λ, φ} to (1). Multiply the equation
for φ by φ and integrate:∫ l

0

φ
d2φ

dx2
dx+ λ

∫ l

0

φ2dx = 0

By integration-by-parts∫ l

0

φ
d2φ

dx2
dx = φ

dφ

dx
|l0 −

∫ l

0

(
dφ

dx

)2

dx .

Hence

−
∫ l

0

(
dφ

dx

)2

dx+ λ

∫ l

0

φ2dx = 0 or λ =

∫ l

0

(
dφ

dx

)2

dx/

∫ l

0

φ2dx ≥ 0 .

Again, by our sign convention, this shows λ ≥ 0 (assuming λ is a real con-
stant; later in the Notes we will show λ must be real). The ratio of integrals
describing λ is called the Rayleigh Quotient. We will return to discuss it
later in the course when we discuss more general eigenvalue problems.

Now if λ = 0 in (1), then φ(x) = Ax + B, but applying the b.c.s gives
φ(x) ≡ 0. Therefore, λ = 0 is not an eigenvalue. For λ > 0, by the char-
acteristic equation method, since the equation in (1) is a constant coefficient
equation, φ(x) = erx → erxr2 + λerx = 0 → r2 = −λ, which implies
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r = ±i
√
λ. While ei

√
λ, e−i

√
λ is a valid fundamental set of solutions, we

want to deal with real-valued functions. Hence, an equivalent fundamen-
tal set of solutions we use is cos(

√
λx), sin(

√
λx), so the general solution is

φ(x) = A cos(
√
λx) + B sin(

√
λx). Apply the b.c.s: φ(0) = 0 = A and

φ(l) = 0 = B sin(
√
λl). But B 6= 0, so sin(

√
λl) = 0 →

√
λl = nπ, for

n = 1, 2, 3, . . .. That is, for each positive integer n (n ∈ N), λ = λn = (nπ
l

)2

is an eigenvalue for the problem, and sin(nπx
l

) is an eigenfunction associated
with λn, so call it φn(x). So we have an infinite number of eigenvalue-
eigenfunction pairs {λn, φn(x)} = {(nπ

l
)2, sin(nπx

l
)}∞n=1, and since T (t) also

depends on λn, write Tn(t) = bne
−n2π2Dt/l2 . Thus, u(x, t) = un(x, t) =

Tn(t)φn(x) = bne
−n2π2Dt/l2 sin(nπx

l
) satisfies the pde and boundary conditions

for each n ∈ N.
What about the initial condition? Since any finite linear combination

of such un
′s is also a solution to the pde and b.c.s, then if f(x) is a sum

of un
′s, we just match coefficients. For example, if f(x) = 3 sin(9πx

l
) −

5 sin(15πx
l

), then u(x, t) = 3e−81π
2Dt/l2 sin(9πx

l
) − 5e−225π

2Dt/l2 sin(15πx
l

). But
most initial conditions f(x) are not a linear combination of eigenfunctions.
For an arbitrary continuous function on 0 ≤ x ≤ l, we may need all possible
contributions un so write

u(x, t) =
∞∑
n=1

bne
−n2π2Dt/l2 sin(

nπx

l
) .

To satisfy the initial condition means we need

f(x) =
∞∑
n=1

bn sin(
nπx

l
) . (2)

But what does this mean? By combining all possible contributions in an
infinite series we are employing an extended superposition principle, and
in (2), the series represents the Fourier sine series for f if the b′ns are
the appropriate Fourier coefficients. To obtain these, multiply (2) by some
arbitrary eigenfunction sin(mπx

l
) and integrate:∫ l

0

f(x) sin(
mπx

l
)dx =

∫ l

0

∞∑
n=1

bn sin(
nπx

l
) sin(

mπx

l
)dx

=
∑
n≥1

bn

∫ l

0

sin(
nπx

l
) sin(

mπx

l
)dx .
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We will leave justification for interchanging integration and infinite summa-
tion for later. By the trig addition formulas,

sin(A) sin(B) =


sin2(A) = 1

2
− 1

2
cos(2A) if B = A

1
2
[cos(A−B)− cos(A+B)] if B 6= A

so with A = nπx/l, B = mπx/l,

∫ l

0

sin(
mπx

l
) sin(

mπx

l
)dx =


0 if n 6= m

l
2

if n = m
(3)

Exercise: Work through the details of this calculation yourself.

Formula (3) states that the sequence of eigenfunctions {sin(nπx
l

)} on (0, l)
is an orthogonal sequence. Thus∫ l

0

f(x) sin(
mπx

l
)dx = bm

l

2
,

hence,

u(x, t) =
∞∑
n=1

bne
−n2π2Dt/l2 sin(

nπx

l
)

where, for each n,

bn =
2

l

∫ l

0

f(x) sin(
nπx

l
)dx .

There are steps that need justification, but for now consider some specific
problems to get the process down.

Example 1: 
ut = Duxx 0 < x < 1, t > 0
u(x, 0) = R 0 < x < 1
u(0, t) = 0 = u(1, t) t > 0

Here R = constant > 0, and l = 1, so we have the above expression for u
except now

f(x) ≡ R =
∞∑
n=1

bn sin(nπx) .
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Figure 1: solution to example 1 with D = 1, R = 2. Note the rapid decay in
the solution, even at the center of the rod.

Now, from the formula for the Fourier coefficients,∫ 1

0

R sin(nπx)dx = − R

nπ
cos(nπx)|x=1

x=0 =
R

nπ
{1− cos(nπ)}

=
R

nπ
{1− (−1)n} =

{
0 if n is even
2R
nπ

if n is odd .

Therefore, the solution is

u(x, t) =
4R

π

∑
n=1,3,5,...

e−n
2π2Dt

n
sin(nπx) =

4R

π

∞∑
k=1

e−(2k−1)
2π2Dt

2k − 1
sin((2k−1)πx) .

See figure 1 for a graph of the solution in a specific case.

Example 2: 
ut = uxx 0 < x < 2 , t > 0

u(x, 0) = x 0 < x < 2

u(0, t) = 0 = u(2, t) t > 0 .
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Now

bn =

∫ 2

0

x sin(
nπx

2
)dx = − 2x

nπ
cos(

nπx

2
)|20 +

2

nπ

∫ 2

0

cos(
nπx

2
)dx

= − 4

nπ
cos(nπ) =

4

nπ
(−1)n+1 .

Therefore

u(x, t) =
4

π

∞∑
n=1

(−1)n+1e−n
2π2t/4

n
sin(

nπx

2
) .

Example 3: Consider the Neumann problem
ut = uxx 0 < x < 2 , t > 0

u(x, 0) = x 0 < x < 2

ux(0, t) = 0 = ux(2, t) t > 0 .

With a change in boundary conditions we must again look at the EVP. With
u = T (t)φ(x), we have

d2φ
dx2

+ λφ = 0 0 < x < 2

dφ
dx

(0) = 0 = dφ
dx

(2)

Now if λ = 0, d2φ
dx2

= 0, so φ(x) = Ax+B, but the boundary conditions force
A = 0, so φ = B = arbitrary constant. Hence, λ = 0 is an eigenvalue. We
can let φ ≡ 1 be the associated eigenfunction. For λ > 0 we have φ(x) =
A cos(

√
λx) +B sin(

√
λx). For the first b.c., dφ

dx
(0) =

√
λB = 0. Since λ 6= 0,

then B = 0. Applying the second b.c. gives dφ
dx

(2) = −
√
λA sin(2

√
λ) = 0.

We can not have A = 0, which means we need sin(2
√
λ) = 0. This implies

that 2
√
λ = nπ, again for n ∈ N. Finally, λ = λn = (nπ

2
)2, with eigenfunc-

tions φn(x) = cos(nπx
2

), n = 1, 2, 3, . . .. Since the equation did not change,

we have T (t) = constant if λ = 0, otherwise Tn(t) = e−λnt = e−n
2π2t/4. Em-

ploying the superposition principle (writing a linear combination for all the
potential contributions), we have

u(x, t) =
a0
2

+
∞∑
n=1

ane
−n2π2t/4 cos(

nπx

2
) (4)
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Every term satisfies the pde and b.c.s, and so does the infinite series (4) if
we can interchange summation and integration. Letting t→ 0, we need

x =
a0
2

+
∞∑
n=1

an cos(
nπx

2
)

That is, we want the Fourier cosine series for f(x) = x on the interval
(0, 2). We play the same game we did in the last examples, namely multiply
both sides of the Fourier series by an arbitrary eigenfunction, cos(mπx

2
), and

integrate both sides.∫ 2

0

x cos(
mπx

2
)dx =

∫ 2

0

a0
2

cos(
mπx

2
)dx+

∑
n≥1

an

∫ 2

0

cos(
nπx

2
) cos(

mπx

2
)dx

For m > 0 the first integral on the right side is zero. Again by using the trig
additions formulas, the eigenfunctions {cos(nπx

l
)}n≥0 form an orthogonal set

of functions on (0, l), where l = 2, with∫ l

0

cos(
mπx

2
) cos(

nπx

2
)dx =


l/2 if n = m

0 if n 6= m
(5)

Note that we can include m = 0 here. That is, to find a0, we multiply by 1
(The eigenfunction for the zero eigenvalue) and integrate. All the terms in the
sum integrate to zero. So the right-hand side becomes just a0. Otherwise,
using cos(mπx

2
), m ≥ 1, the right-hand side becomes am

l
2

= am. For the
left-hand side,∫ 2

0

x cos(
mπx

2
)dx =

4

m2π2
cos(

mπx

2
)|20 =

4

m2π2
{(−1)m − 1} .

So, for m ≥ 1

am =


0 m = even

− 8
m2π2 m = odd

These are the Fourier cosine coefficients for f(x) = x we were looking for.
Putting this into the expression for u gives

u(x, t) = 1− 8

π2

∑
m=1,3,5,...

e−m
2π2t/4

m2
cos(

mπx

2
)
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= 1− 8

π2

∞∑
k=1

e−(2k−1)
2π2t/4

(2k − 1)2
cos(

(2k − 1)πx

2
) .

Remark: In the series (4) it is classical to write the first term as a0/2 rather
than a0 because it simplifies slightly the description of the Fourier coefficients.
Due to the fact we have a Neumann boundary condition on both ends of the
interval leads to having a zero eigenvalue, which leads to having this term.
For a general initial condition f(x), and on more general interval (0, l), (4)
would become

u(x, t) =
1

l

∫ l

0

f(x)dx+
∞∑
n=1

ane
−n2π2t/l2 cos(

nπx

l
) .

Notice that as t → ∞, all the terms in the summation goes to zero, so
u(x, t)→ (1/l)

∫ l
0
f(x)dx, the average of f on the interval. This justifies the

informal calculation we did earlier in Section 13, example 3, when originally
discussing steady state solutions.

Let us summarize what we have done so far concerning solving for the
solutions to the diffusion IBVPs:

1. If you are presented with a problem that has non-homogeneous bound-
ary conditions, transform the problem to one that has homogeneous
boundary conditions.

2. Then apply separation of variables method, u = T (t)φ(x), on the equa-
tion and derive a spatial ODE problem (EVP), involving the equation
for φ and its boundary conditions, along with the equation for T .
The type of b.c.s on the EVP drives the type of eigenfunction series we
have for the solution of the pde problem.

3. Solve the EVP for the set of eigenvalues {λn} and associated eigen-
functions {φn}.

4. Substitute the eigenvalues into the temporal equation and solve it to
obtain the T ′ns. Then use the (extended) superposition principle to
sum all possible contributions to u:

u(x, t) =
∑
n

AnTn(t)φn(x) .
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5. Finally, let t → 0 to obtain u(x, 0) = f(x) =
∑

nAnφn(x), and solve
for the Fourier coefficients An, using the orthogonality property of the
set of eigenfunctions {φn}. To emphasize, you make use of the initial
data as the last process you do!

This strategy is very general, and we will apply it over and over. For exam-
ple, what if the problem is a wave equation problem?

Example 4: 

utt = c2uxx 0 < x < l , t > 0

u(x, 0) = f(x) 6= 0 0 < x < l

ut(x, 0) = g(x) ≡ 0

u(0, t) = 0 = u(l, t) t > 0 .

We call this problem the “plucked-string” problem, or “harpsichord prob-
lem.” Let u(x, t) = T (t)φ(x) and substitute into the equation:

1

c2T

d2T

dt2
=

1

φ

d2φ

dx2
= −λ⇒

d2φ
dx2

+ λφ = 0 0 < x < l
φ(0) = 0, φ(l) = 0

along with
d2T

dt2
+ λc2T = 0 t > 0 .

From our original example (1), which has the same EVP, we have λ = λn =
(nπ/l)2, φ = φn(x) = sin(nπx

l
), n = 1, 2, 3, . . .. For the T equation, substitut-

ing T = ert into the equation gives the characteristic equation r2 +λnc
2 = 0,

so r = ±ic
√
λn. Hence, a fundamental set of solutions for the T equation is

cos(c
√
λnt), sin(c

√
λnt). Thus

u(x, t) =
∞∑
n=1

Tn(t)φn(x) =
∞∑
n=1

{an cos(c
√
λnt) + bn sin(c

√
λnt)} sin(

nπx

l
)
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To finish off the problem, step 5 in the general procedure, we substitute into
the two initial conditions to obtain

f(x) =
∑∞

n=1 an sin(nπx
l

)

g(x) = 0 = c
∑∞

n=1

√
λn bn sin(nπx

l
) .

A Fourier (sine) series with 0 coefficients represents a Fourier series of the
0 function, and since Fourier series are unique, bn = 0 for all n. If g(x) =
ut(x, 0) 6= 0, then we would have multiplied both sides by sin(mπx

l
) and inte-

grated, obtaining an explicit expression for bn because of the orthogonality
property of the eigenfunctions. Instead we do this on the series for f to
obtain∫ l

0

f(x) sin(
mπx

l
)dx =

∞∑
n=1

an

∫ l

0

sin(
nπx

l
) sin(

mπx

l
)dx =

l

2
am (6)

from which we have the formula for an for each n, and therefore have the
final solution representation

u(x, t) =
∞∑
n=1

an cos(
cnπ

l
t) sin(

nπx

l
) . (7)

Of course, if we are given an explicit function f(x), we would integrate out
the left side of (6) (assuming we can do the calculus) and have an explicit
set of Fourier coefficients.

Expression (7) for the solution is not very intuitive, but let us make an ob-
servation about its structure. Again by the addition formulas, 2 cos(A) sin(B) =
sin(A+B)− sin(A−B), so

cos(
cnπ

l
t) sin(

nπx

l
) =

1

2
[sin(

cnπ

l
t+

nπx

l
)− sin(

cnπ

l
t− nπx

l
)]

=
1

2
[sin(

nπ

l
(x+ ct)) + sin(

nπ

l
(x− ct))]

so

u(x, t) =
1

2

∞∑
n=1

an sin(
nπ

l
(x+ct))+

1

2

∞∑
n=1

an sin(
nπ

l
(x−ct)) = F (x+ct)+G(x−ct)
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So, buried in expression (7) for the solution to example 4 is the general situ-
ation discussed initially with regard to the vibrating string equation, namely
that the solution is made of left and right-moving waves.

Remark: We are dealing with important, common examples here but they
are somewhat special in that they have equations that involve constant co-
efficients, or have coefficients of a single variable, or coefficients that can be
separable. It is not hard coming up with examples of equations that fail to
be separable. Two examples are

utt = (t+ x+ 1)uxx
ut = uxx + xtu

Summary: What you need to know is captured in the five step procedure
on page 8. Do as many problems as time permits to get this separation of
variables process down in various problem situations.

Exercises:

1. Modify example 4 to

utt = c2uxx 0 < x < l , t > 0

u(x, 0) = f(x) ≡ 0 0 < x < l

ut(x, 0) = g(x) 6= 0

u(0, t) = 0 = u(l, t) t > 0 .

Call this the “hammered-string” problem (or “piano problem”). Show
that the solution has the form u(x, t) =

∑
n≥1 bn sin(c

√
λnt) sin(nπx/l),

and that it can again be written as a sum of left and right moving waves.
Show that, for each n, n = 1, 2, . . .,

bn =
2

cπn

∫ l

0

g(x) sin(
nπx

l
)dx .

In comparing the coefficients in this problem versus the coefficients in
example 4, can you make any physical interpretations about differences
between the plucked-string and the hammered-string problems?
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2. For the table below verify the eigenvalues and eigenfunctions for various
b.c.s given. Then write out what the series is for u(x, t) when the
equation is ut = Duxx and when the equation is utt = c2uxx .

left b.c. right b.c. eigenvalues eigenfunctions
u(0, t) = 0 u(l, t) = 0 (nπ

l
)2, n ≥ 1 sin(nπx

l
)

u(0, t) = 0 ux(l, t) = 0 ( (n−1/2)π
l

)2, n ≥ 1 sin( (n−1/2)πx
l

)

ux(0, t) = 0 u(l, t) = 0 ( (n−1/2)π
l

)2, n ≥ 1 cos( (n−1/2)πx
l

)
ux(0, t) = 0 ux(l, t) = 0 (nπ

l
)2, n ≥ 0 cos(nπx

l
)

3. Consider the problem
ut = uxx 0 < x < 1 , t > 0

u(x, 0) = 0 0 < x < 1

u(0, t) = 1 , u(1, t) = 0 t > 0 .

Transforming the problem to one with homogeneous boundary condi-
tions, solve the new problem via separation of variables method, then
write the solution out for the original variable u(x, t).

4. Consider the problem
ut = uxx − au 0 < x < 1 , t > 0 , a = constant 6= 0

u(x, 0) = f(x) 0 < x < 1

u(0, t) = 0 , u(1, t) = 0 t > 0 .

(a) if a > 0, what are the possible steady state solutions?

(b) solve the time-dependent problem via separation of variables method
when a > 0. what happens to the solution as t→∞?

(c) if a < 0, what are the possible steady state solutions?

5. Consider the damped vibrating string problem
utt + kut = c2uxx 0 < x < 1 , t > 0 , k, c > 0 are constants

u(x, 0) = f(x) , ut(x, 0) = 0 0 < x < 1

u(0, t) = 0 = u(1, t) t > 0 .
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Use separation of variables method to find the series solution for the
case k < 2πc. Why is this restriction imposed?

6. Solve the problem
ut = 0.1uxx 0 < x < π , t > 0

u(x, 0) = f(x) 0 < x < π

u(0, t) = 0 = ux(π, t) t > 0 .

7. Solve the problem
ut = De−tuxx − bu 0 < x < π , t > 0 b > 0 is constant

u(x, 0) = R sin(x) 0 < x < π R is a constant

u(0, t) = 0 = u(π, t) t > 0 .

8. Consider the problem
ut = Duxx |x| < L , t > 0

u(x, 0) = f(x) |x| < L

u(±L, t) = 0 t > 0 .

Symmetry in an EVP will imply even function solution, i.e. cosines. For
this symmetric problem, show that the eigenfunctions are of the form
cos(
√
λx) and that u(x, t) = 4

π

∑
n≥1

(−1)n
2n−1 e

−(2n−1)2π2Dt/L2
cos( (2n−1)πx

2L
).

9. With a ∈ C[0,∞), a(t) > 0 for all t > 0, consider the problem
ut = a(t)uxx 0 < x < 1 , t > 0

u(x, 0) = sin(πx) 0 < x < 1

u(0, t) = 0 = u(1, t) t > 0 .

(a) solve for u(x, t), assuming the general a(t) is known.
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(b) here is an inverse problem: suppose instead we do not initially
know a(t) (except we assume it has the above properties), but we
are given an additional piece of information, namely u(1/2, t) =
g(t). Here g(t) is positive, continuously differentiable, and dg

dt
< 0

for t > 0, and g(0) = 1. Find a(t) in terms of g(t).
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