14 Separation of Variables Method

Consider, for example, the Dirichlet problem

w = Dugy O<zx<l,t>0
u(z,0) = f(x) 0<x<l

u(0,t) =0 =wu(l,t) t>0
Let u(z,t) = T(t)¢(z); now substitute into the equation:

dT ¢
—¢b=DT—=

i ? dzz
LT 1
DT dt  ¢dx?

But the left-hand side depends only on the (independent) variable ¢, while
the right-hand side depends only on x, so this expression must be constant:

1 dr  1d%¢
DT dt  ¢dx?
Remark: T will get back to why the negative sign is used on the right side
shortly; it is done for convenience because the constant turns out to be a
negative real number, making \ easily remembered as being positive.

For the T equation, dT'/dt = —ADT, the rate of change of T is pro-
portional to 7', so T'(t) must be an exponential function; namely, up to a
multiplication constant, T'(t) = e *P!. Recall from an earlier discussion that
for diffusion we expect dissipation of the features of f(x) over time, so it is
reasonable to have T'(t) — 0 as t — oco. For this to happen, we would expect
A>0.

FEzercise: Obtain the T'(t) by method of integrating factors.



Applying our boundary conditions to u = T'¢, we have, for example,
0=u(0,t) =T(t)p(0) — ¢(0) = 0. So the spatial problem is

d12+>\¢_0 O0<zx <l
(1)
$(0) =0 =o(l)

But we do not know the value of the constant A in (1), and since we must
ultimately satisfy the non-zero initial condition when we return to the u
problem, ¢(x) can not be the zero function. Hence (1) is an eigenvalue
problem (EVP). So we want all solutions {\, ¢(:)} such that ¢ is a non-
trivial function. Put another way, we seek all (real) constants A that give us
a non-zero ¢(x), up to a multiplicative constant.

Solving the EVP
First suppose we have a solution pair {), ¢} to (1). Multiply the equation
for ¢ by ¢ and integrate:

/ —dx+)\/ ¢*dx =0
By integration-by-parts
/ ¢d2¢ d¢ / g\
N 0 dx de .

Hence

! 2 l ! 2 l
—/ (d—¢) dm—i-/\/ngdm:O or )\:/<d_¢) da://ngdeO.

o \dz 0 0 \dz 0

Again, by our sign convention, this shows A > 0 (assuming A is a real con-
stant; later in the Notes we will show A must be real). The ratio of integrals
describing A is called the Rayleigh Quotient. We will return to discuss it
later in the course when we discuss more general eigenvalue problems.

Now if A = 0 in (1), then ¢(x) = Az + B, but applying the b.c.s gives
¢(xr) = 0. Therefore, A = 0 is not an eigenvalue. For A > 0, by the char-
acteristic equation method, since the equation in (1) is a constant coefficient
equation, ¢(z) = € — €™r? + X = 0 — r? = —)\, which implies
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= +iv/X. While eiﬁ,e*iﬁ is a valid fundamental set of solutions, we
want to deal with real-valued functions. Hence, an equivalent fundamen-
tal set of solutions we use is cos(v/Az),sin(v/Az), so the general solution is
d(x) = Acos(vAxr) + Bsin(v/Az). Apply the b.cs: ¢(0) = 0 = A and
¢(l) = 0 = Bsin(v/Al). But B # 0, so sin(v/Al) = 0 — VAl = nn, for
n =1,2,3,.... That is, for each positive integer n (n € N), X = X, = (%F)?
is an elgenvalue for the problem, and sin("7*) is an eigenfunction associated
with A, so call it ¢,(z). So we have an infinite number of eigenvalue-
eigenfunction pairs {\,, ¢n(2)} = {(%F)% sin("7=)}22,, and since T'(t) also
depends on A, write T,(t) = bye "™ P Thus, u(z,t) = un(z,t) =
T,(t)on(z) = bne*"%QDt/l2 sin(“7*) satisfies the pde and boundary conditions
for each n € N.

What about the initial condition? Since any finite linear combination
of such u, 's is also a solution to the pde and b.c.s, then if f(z) is a sum
of u, 's, we just match coefficients. For example, if f(z) = 3sin(2%) —

1
5sin(15lm), then u(x,t) = 3e~817*Dt/1? Sln(97l“) 5e 225w Dt/1? 5111(15”) But
most initial conditions f(z) are not a linear combination of eigenfunctions.
For an arbitrary continuous function on 0 < x <[, we may need all possible

contributions u,, so write

o0
2.2 2 . nmx
= E bpe " DU sm(T) :
n=1

To satisfy the initial condition means we need
=3 b, sin(nlﬂ) . (2)
n=1

But what does this mean? By combining all possible contributions in an
infinite series we are employing an ezxtended superposition principle, and
in (2), the series represents the Fourier sine series for f if the 0/ s are
the appropriate Fourier coefficients. To obtain these, multiply (2) by some

arbitrary eigenfunction sin(**) and integrate:

/f ) sin(—— mﬂx dx—/ Zb sin( s1n(m;m)dx
—Zb / sin( )sin(m;m)d:c.

n>1




We will leave justification for interchanging integration and infinite summa-
tion for later. By the trig addition formulas,

sin*(A) = § — 5 cos(2A) if B=A

sin(A) sin(B) =
t[cos(A — B) —cos(A+ B)] if B# A

so with A = nrz/l, B=mmnz/l,

0 ifn#m

l i

5 ifn=m

Exercise: Work through the details of this calculation yourself.

Formula (3) states that the sequence of eigenfunctions {sin(“7*)} on (0,1)
is an orthogonal sequence. Thus

! mnx [
/Of(x)sin( l )dx:bmﬁ,

hence,
—n2x2 2 nmtx
2 :b Dt/l ( l )

where, for each n,
9
:—/ f(x)sin(@)da: .
L Jo l

There are steps that need justification, but for now consider some specific
problems to get the process down.

Ezxample 1:
wp = Dy, O<ax<l, t>0

u(z,0) =R 0<zr<l1
u(0,t) =0=wu(l,t) t>0

Here R = constant > 0, and [ = 1, so we have the above expression for u

except now
r)=R= Z b, sin(nmx)
n=1



Figure 1: solution to example 1 with D = 1, R = 2. Note the rapid decay in
the solution, even at the center of the rod.

Now, from the formula for the Fourier coefficients,

! R R
/0 Rsin(nnzx)dr = o cos(nmz)[*Zy = %{1 — cos(nm)}

0 ifniseven

R ny _
:E{l_(_l) }—{ 28 if pis odd .

nm

Therefore, the solution is

AR —n2m2Dt AR > —(2k—1)272Dt
u(z,t) = — Z eT sin(nrz) = — Z 62T sin((2k—1)7x) .
n=1,35,... k=1

See figure 1 for a graph of the solution in a specific case.
Ezxample 2:
Ut = Ugy O<zx<2,t>0
u(z,0) =x 0<z<2
uw(0,t) =0=wu(2,t) t>0.
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2 2
2 2
b = / xsin(@)dx == Cos(n_ﬁx) o+ / CoS(—mTE)dx
0 2 nm 2 nw J, 2
4 4
- — _
— cos(nm) mr( )

Therefore
n+1 —n?m3t/4

Z sm(2).

n:l

Ezxample 3: Consider the Neumann problem

Up = Ugy O<x<2,t>0
u(z,0) ==z O<z<2

ur(0,t) =0 =wu,(2,t) t>0.

With a change in boundary conditions we must again look at the EVP. With
u=T(t)p(x), we have

L+ N =0 O<z<2

L0)=0="2(2)

dz dzx

Now if A =0, 3 2 =0, so ¢(x) = Az + B, but the boundary conditions force
A =0, so ¢ = B = arbitrary constant. Hence, A = 0 is an eigenvalue. We
can let ¢ = 1 be the associated eigenfunction. For A > 0 we have ¢(x) =
Acos(vVAz) + Bsin(v/Az). For the first b.c., 2(0) = v/AB = 0. Since A # 0,
then B = 0. Applying the second b.c. gives %(2) = —VAAsin(2V/\) = 0.
We can not have A = 0, which means we need sin(2v/\) = 0. This implies
that 2v/\ = n7, again for n € N. Finally, A = \, = ("&)?, with eigenfunc-
tions ¢, (x) = cos(’”z”"), n = 1,2,3,.... Since the equation did not change,
we have T'(t) = constant if A = 0, otherwise T},(t) = e ! = e~ ™t/4 Em-
ploying the superposition principle (writing a linear combination for all the

potential contributions), we have

Qo > n2r t/4 nmwx
=5+ > ane 0s(—-) (4)

n=1



Every term satisfies the pde and b.c.s, and so does the infinite series (4) if
we can interchange summation and integration. Letting ¢t — 0, we need

oo

T = % + ;ancos(nQﬂ)

That is, we want the Fourier cosine series for f(x) = x on the interval
(0,2). We play the same game we did in the last examples, namely multiply
both sides of the Fourier series by an arbitrary eigenfunction, cos(™5*), and
integrate both sides.

2 2 2
/Oxcos(m;m)dx:/o @cos(m;m)dx—kz%/o cos(ngx)cos(m;m)dx

2
n>1

For m > 0 the first integral on the right side is zero. Again by using the trig
additions formulas, the eigenfunctions {cos(*7*)}n>o form an orthogonal set
of functions on (0,1), where [ = 2, with

[/2 ifn=m

/l cos(mwx) cos(mw)da: = (5)
0 0 ifn#m

Note that we can include m = 0 here. That is, to find ag, we multiply by 1
(The eigenfunction for the zero eigenvalue) and integrate. All the terms in the
sum integrate to zero. So the right-hand side becomes just ag. Otherwise,
using cos(™2L), m > 1, the right-hand side becomes a,,5 = a,,. For the

2
left-hand side,

2
mmx 4 MmmT, o 4 m
/0 x cos( 5 Ydx = " cos( 5 g = m{(—l) -1} .
So, for m > 1
0 m = even
Uy =
—# m = odd

These are the Fourier cosine coefficients for f(z) = = we were looking for.
Putting this into the expression for u gives

8 eI /4 mmx
u(x,t)zl—; Z — cos( 5 )

m=1,3,5,...
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8 o= e GE-IT/A (o) 1)y
__w_kz_: (2k — 1) cos(——5 ) -

Remark: In the series (4) it is classical to write the first term as a(/2 rather
than ag because it simplifies slightly the description of the Fourier coefficients.
Due to the fact we have a Neumann boundary condition on both ends of the
interval leads to having a zero eigenvalue, which leads to having this term.
For a general initial condition f(z), and on more general interval (0,1), (4)
would become

I =
t) = 7/0 f(z)dz + nz:lane_”2”2t/52 cos(nlﬂ) :

Notlce that as t % oo, all the terms in the summation goes to zero, so

u(z, (1/1) fo x)dx, the average of f on the interval. This justifies the
1nf0rmal calculation we did earlier in Section 13, example 3, when originally
discussing steady state solutions.

Let us summarize what we have done so far concerning solving for the
solutions to the diffusion IBVPs:

1. If you are presented with a problem that has non-homogeneous bound-
ary conditions, transform the problem to one that has homogeneous
boundary conditions.

2. Then apply separation of variables method, u = T'(t)¢(x), on the equa-
tion and derive a spatial ODE problem (EVP), involving the equation
for ¢ and its boundary conditions, along with the equation for 7.
The type of b.c.s on the EVP drives the type of eigenfunction series we
have for the solution of the pde problem.

3. Solve the EVP for the set of eigenvalues {),} and associated eigen-
functions {¢,}.

4. Substitute the eigenvalues into the temporal equation and solve it to
obtain the 7's. Then use the (extended) superposition principle to
sum all possible contributions to wu:

= Z AT (t) fn ()



5. Finally, let t — 0 to obtain u(z,0) = f(z) = ), An¢n(x), and solve
for the Fourier coefficients A,,, using the orthogonality property of the
set of eigenfunctions {¢,}. To emphasize, you make use of the initial
data as the last process you do!

This strategy is very general, and we will apply it over and over. For exam-
ple, what if the problem is a wave equation problem?

Example 4:
( Uy = gy O<z<l,t>0
u(z,0) = f(z) #0 O0<z <l

u(z,0) =g(z) =0

L w(0,t) =0=wu(l,t) t>0.

We call this problem the “plucked-string” problem, or “harpsichord prob-
lem.” Let u(z,t) = T(t)¢(x) and substitute into the equation:

1 2 2
clT:lalqb:_/\:>
AT dt? ¢ da?
%+)\¢=0 O<z<l
¢(0) =0, (1) =0
along with
d*T 9
W—F)\CTZO t>0.

From our original example (1), which has the same EVP, we have A = \,, =
(nm/1)%, ¢ = dn(z) = sin(%2), n = 1,2,3,.... For the T equation, substitut-
ing T = €" into the equation gives the characteristic equation r2 + \,,c¢® = 0,
so r = Ficy/A,. Hence, a fundamental set of solutions for the T" equation is

cos(cy/Ant), sin(cy/A,t). Thus

u(z,t) = ZTn(t)qﬁn(I) = Z{an cos(C\//\_nt) + by, sin(c\/)\_nt)} Sin(nlﬂ)



To finish off the problem, step 5 in the general procedure, we substitute into
the two initial conditions to obtain

fla) =3 00, ansin(#F)
g(x) =0=1cd> 0" VA, by sin(FE) |

A Fourier (sine) series with 0 coefficients represents a Fourier series of the
0 function, and since Fourier series are unique, b, = 0 for all n. If g(x) =
uy(,0) # 0, then we would have multiplied both sides by sin(™7*) and inte-
grated, obtaining an explicit expression for b, because of the orthogonality
property of the eigenfunctions. Instead we do this on the series for f to
obtain

I % !
/0 f(x) sin(@)dw = ; an/o sin(@) sin(m;m)dx — éam (6)

from which we have the formula for a, for each n, and therefore have the
final solution representation

= Z an cos(?t) sin(nlﬂ) : (7)
n=1

Of course, if we are given an explicit function f(x), we would integrate out
the left side of (6) (assuming we can do the calculus) and have an explicit
set of Fourier coefficients.

Expression (7) for the solution is not very intuitive, but let us make an ob-
servation about its structure. Again by the addition formulas, 2 cos(A) sin(B) =
sin(A + B) —sin(A — B), so

1
cos(chﬂt) sin(nlﬂ) = §[sin(ch7Tt + ?) — sin(cn—ﬂt — @)]

- 5[sm(”l—”(g; +et)) + sin(”T”(x —ct))]
S0
u(z,t) = % Z ay, sm( x+ct —i—% Z ap sin(— (x—ct)) = F(z+ct)+G(z—ct)
n=1 n=1
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So, buried in expression (7) for the solution to example 4 is the general situ-
ation discussed initially with regard to the vibrating string equation, namely
that the solution is made of left and right-moving waves.

Remark: We are dealing with important, common examples here but they
are somewhat special in that they have equations that involve constant co-
efficients, or have coefficients of a single variable, or coefficients that can be
separable. It is not hard coming up with examples of equations that fail to
be separable. Two examples are

Uy = (t + x4+ 1)wa
Up = Uy + TTU

Summary: What you need to know is captured in the five step procedure
on page 8. Do as many problems as time permits to get this separation of
variables process down in various problem situations.

FEzxercises:
1. Modify example 4 to

(wy = gy O<z<l,t>0
uw(z,0) = f(r) =0 0<z<lI

w(z,0) = g(x) # 0

u(0,t) =0=u(l,t) t>0.

\

Call this the “hammered-string” problem (or “piano problem”). Show
that the solution has the form u(z,t) = 3 ., by sin(cv/A,t) sin(nmz /1),
and that it can again be written as a sum of left and right moving waves.
Show that, for each n, n =1,2,...,
2 ! nmwr
b, = — z)sin(——)dx .
— [ @)

In comparing the coefficients in this problem versus the coefficients in
example 4, can you make any physical interpretations about differences
between the plucked-string and the hammered-string problems?
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2. For the table below verify the eigenvalues and eigenfunctions for various
b.c.s given. Then write out what the series is for u(x t) when the
equation is u; = Dug, and when the equation is uy = c?uy, .

left b.c. right b.c.  eigenvalues eigenfunctions
w00 =0 ul,) =0 (F)"n>1 sin (232
w(0,8) =0  wu(l,t)=0 ( n— 1/2 ) n>1 sin(("fll/m”)
ur(0,8) =0 wu(l,t)=0 (=20 1l ™2n>1 cos(ATE)
u:(0,4) =0 wu,(l,t)=0 (F)*n>0 cos("¥)
3. Consider the problem
Ut = Ugy O<zx<l,t>0
U(l‘,O):O O<zr<l1

w(0,t) =1, u(l,t)=0 t>0.

Transforming the problem to one with homogeneous boundary condi-
tions, solve the new problem via separation of variables method, then
write the solution out for the original variable u(x,t).

4. Consider the problem
Up = Ugy — QU 0<x<1l,t>0, a= constant # 0

u(z,0) = f(x) 0<z<l1

u(0,t) =0, u(l,t) =0 t>0.

(a) if @ > 0, what are the possible steady state solutions?

(b) solve the time-dependent problem via separation of variables method
when a > 0. what happens to the solution as t — co0?

(c) if a < 0, what are the possible steady state solutions?

5. Consider the damped vibrating string problem

U + kuy = g, O<zx<1,t>0, k,c>0 are constants
u(z,0) = f(z), u(z,0) =0 0<z<1
u(0,t) =0 =u(l1,t) t>0.
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Use separation of variables method to find the series solution for the
case k < 2mwc. Why is this restriction imposed?

6. Solve the problem

Uy = 0.1ug, O<z<m,t>0
u(z,0) = f(x) O<z<m
w(0,t) =0 = ug(m,t) t>0.
7. Solve the problem
w = De tuyy —bu  0<ax<m,t>0 b>0is constant
u(z,0) = Rsin(z) 0<xz<7m Risa constant
u(0,t) =0=wu(mt) t>0.
8. Consider the problem
Uy = Dy, le| <L, t>0
u(z,0) = f(z) |z| <L
uw(£L,t)=0 t>0.
Symmetry in an EVP will imply even function solution, i.e. cosines. For

this symmetric problem, show that the eigenfunctions are of the form
cos(vAz) and that u(z,t) = =D D %67(%71)%2&5/& COS(%).

2n—

9. With a € C0,00), a(t) > 0 for all t > 0, consider the problem
up = a(t) Uy O<r<1l,t>0
u(z,0) = sin(7x) O<z<l1
uw(0,t) =0=wu(1,t) t>0.
(a) solve for u(x,t), assuming the general a(t) is known.
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(b) here is an inverse problem: suppose instead we do not initially
know a(t) (except we assume it has the above properties), but we
are given an additional piece of information, namely w(1/2,t) =
g(t). Here g(t) is positive, continuously differentiable, and % < 0
for t > 0, and ¢(0) = 1. Find a(t) in terms of g(t).
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